

EMPOWERING PEOPLE

To make healthier and more sustainable choices in the renovation and construction of the places we live

Over 30,000 educated 13,000 Greener Homes 501C3 Non Profit

Greenhomeinstitute.org

Passive House Institute US

Conservation = Resource

Source: The Small Homes Council at the University of Illinois

Illinois Lo-Cal House, 1974

Passive House Institute US

HERSindex.com

Home Energy Rating System (HERS)

Performance Testing:

- Heating and cooling
- Water heating
- Lighting
- Appliances
- Building envelope

ENERGY STAR VERSION 3

Thermal Enclosure System:

- Air Leakage
- Insulation R-Value
- Insulation Installation
- Air Barriers
- Thermal Bridging
- High-Perf. Windows

HVAC Quality Installation System:

- Efficient Equipment
- Right-Sizing
- Air Distribution
- Refrigerant Charge
- Duct Installation
- Pressure Balancing
- Ventilation
- Filtration

Water **Management** System:

- Roof Membranes
- Flashing
- •WRB's
- Fabric Filters
- Capillary Breaks
- Drainage Layer

What distinguishes new homes with the Indoor airPLUS label?

With Indoor airPLUS, EPA offers a way for builders to distinguish themselves by building homes with professional best practices, including the following design and construction features:

Moisture Control: Build in added protection from mold and other moisture problems with water managed roofs, walls, and foundations. Features include continuous drainage planes, proper flashing and air sealing, damp-proof foundation walls, capillary breaks, drain tile, and proper grading.

Radon Control: Provide radon-resistant construction in high radon potential areas, including gravel and plastic sheeting below slabs, fully sealed and caulked foundation penetrations, plastic vent pipe running from below slab through the roof, and an attic receptacle for easily adding an electric powered fan to the vent pipe if needed.

Pest Management: Provide a first-line defense against pest problems by fully sealing, caulking, or screening likely pest entry points. When these physical barriers are combined with proper pest management techniques, pesticide use may be reduced.

Heating, Ventilating, and Air-Conditioning (HVAC): Improve indoor air quality with best practice design and installation of ducts and equipment to minimize condensation problems, whole-house and spot ventilation to help dilute and exhaust indoor pollutants, and improved air filtration to remove airborne particulates.

Combustion Venting: Protect residents from potential exposure to combustion gases by installing direct-vented or power-vented gas- and oil-fired equipment, properly vented fireplaces, garages fully sealed from living spaces, and carbon monoxide alarms in each sleeping area.

Building Materials: Reduce sources of pollutants by selecting and installing materials to minimize risk of moisture damage, specifying materials with reduced

Homes to the Power of ZERO

What is the DOE Zero Energy Ready Home™ Label?

It is a Symbol of Excellence for energy savings, comfort, health, quality, and durability met by a select group of leading builders meeting U.S. Department of Energy Guidelines.

A Symbol of Excellence

Program Scope & Applicable

Building Types

Single Family Homes

Low-Rise Multifamily

Mid-Rise Multifamily

Mixed Use & Highris

Single-Family Production

DOE Zero Energy Ready Home PV-Ready Checklist

- Location, based on zip code has at least 5 kWh/m²/day average daily solar radiation based on annual solar insolation using PVWatts online tool: http://gisatnrel.nrel.gov/PVWatts Viewer/index.html AND;
- Location does not have significant natural shading (e.g., trees, tall buildings on the southfacing roof, AND;
- Home as designed has adequate free roof area within +/-45° of true south as noted in the table below.

Conditioned Floor Area of the House (sq. ft.)	Minimum Roof Area within +/- 45° of True South for PV-Ready Checklist to Apply (ft ²)		
<u>< 2000</u>	110		
<u><</u> 4000	220		
<u><</u> 6000	330		
> 6000	440		

DOE ZERO ENERGY READY HOME™

The Glendale Model Kalamazoo, MI

Kalamazoo Valley Habitat for Humanity built this 1,120-ft² home in Kalamazoo, Michigan, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. The home is equipped with an ENERGY STAR-rated refrigerator. It also meets the EPA Indoor airPLUS requirements by using wood products, primer, paint, cabinets, and flooring that limit the release of air contaminants.

Average Monthly Energy Bill Calculated

a Net

Zero home

						Source Zero Renew- able Energy System
					Balanced Ventilation HRV/ERV	Balanced Ventilation HRV/ERV
				SOLAR READY Depends on climate	SOLAR READY ALWAYS	SOLAR READY ALWAYS
				Eff. Comps. & H2O Distrib	Eff. Comps. & H ₂ O Distrib	Eff. Comps. & H ₂ O Distrib
				EPA Indoor airPLUS	EPA Indoor airPLUS	EPA Indoor airPLUS
				Ducts in Condit. Space	Ducts in Condit. Space	Ducts in Condit. Space
		HVAC QI w/WHV	HVAC QI w/WHV	HVAC QI w/WHV	Micro-load HVAC QI	Micro-load HVAC QI
		Water Management	Water Management	Water Management	Water Management	Water Management
		Independent Verification	Independent Verification	Independent Verification	Independent Verification	Independent Verification
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45	HERS < 0
IECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERH	PHIUS PHIUS+	±C PHIUS+ SourceZero

http://www.phius.org/phius-certification-for-buildings-products/phius-2015-project-certification/phius-certific ation-overview

Passive House Institute US

Program Scope & Applicable **Building Types**

Low-Rise Multifamily

Mid-Rise Multifamily

Mixed Use & Highris

Single-Family Production

http://www.phius.org/projects/1132?sort=%60BuildingFunctionTypes%60.%60BuildingFunctionType%60+ASC

Largest Passive House Office Building in US to be Built in Chicago

Jun 14, 2018

http://www.valdostadailytimes.com/news/business/largest-passive-house-office-building-in-us-to-be-built/article_ 23345003-f742-52df-8b20-8d083e4fb8cb.html

	Heating Demand/Load*	Cooling Demand/Load*	AIR-TIGHTNESS (cfm50/sf envelope)	Source Energy Demand	Renewable Generation for Source Zero	
SINGLE FAMILY		1 - 23.4 kBTU/ft².yr 1.3 - 9.5 BTU/hr.ft²	0.05	6200 kWh/person.yr	>Source Energy Demand	
COMMERCIAL	1 - 16.8 kBTU/ft².yr 0 - 7.6 BTU/hr.ft²			38 kBTU/ft2.yr	>Source Energy Demand	
MULTIFAMILY			0.08**	6200 kWh/person.yr /	>Source Energy	
RETROFIT	As above, + allowance for existing thermal bridges	As above, + allowance for existing thermal bridges	0.05 / 0.08**	38 kBTU/ft2.yr	Demand	
*Maximum climat	e specific targets for each	n individual project				

^{**}Buildings with 5 stories+, non-combustible construction

Summary of other recommendations:

- 1. Window U_{w install}-values 0.4 0.08 BTU/hr. ft² °F (varies by climate)
- 2. Ventilation system with heat and/or moisture recovery with >53%-95% efficiency and efficient fan @ 0.27-2.23W/cfm (vary by climate)
- 3. Thermal bridge-free construction <0.006 BTU/hr. ft °F

https://www.energy.gov/sites/prod/files/2017/02/f34/PHIUS%2B2015%20Passive%20Building%20Standarts.pdf

Find your PHIUS+ 2015 Climate-Specific Performance Targets

Each point on the map lists the following criteria:

City

State/Province

ASHRAE 2013 & Global Solar Radiation Location

Kent County International

Zone

5

Annual heating demand kBtu/sf-iCFA.yr

6.1

Annual cooling demand kBtu/sf-iCFA.yr

2.7

Peak heating load Btu/sf-iCFA.h

4.7

Peak cooling load Btu/sf-iCFA.h

4.1

Manual J Peak cooling load Btu/sf-iCFA.h

5.9

http://www.phius.org/software-resources/wufi-passive-and-other-modeling-tools/wufi-passive-3-0

Version 9 (2015) © Passive House Institute

2.5 Tips on Assembly R-Values

Sample R-Value Guidelines**		R-value	ranges	
Zone	Example Cities	Wall	Ceiling	Slab
1	Miami, FL or Honolulu, HI	19 - 27	44 - 60	2ft R-8 vertical perim.
2	Jacksonville, FL or Phoenix, AZ	19 - 27	30 - 70	Uninsulated
3	Charleston, SC or Sacramento, CA	15 - 31	30 - 60	Uninsulated, or 2-4ft R-8 vertical perin
Marine 3	San Francisco, CA	19 - 23	30 - 38	4ft R8-20 vertical perim.
4	Baltimore, MD or Amarillo, TX	31 - 51	49 - 80	2-4ft R8-20 vertical perin
Marine 4	Salem, OR or Seattle, WA	31 - 43	60 - 70	4ft R-20 vertical perim., or whole-slab R-20
5	Providence, RI or Flagstaff, AZ	31 - 43	60 - 70	4ft R-20 vertical perim., or whole-slab R-20
6	Burlington, VT or Billings, MT	39 - 51	70 - 90	whole-slab R20-28
7	Duluth, MN or Edmonton, AB	49 - 65	80 - 90	whole-slab R28-40
8	Fairbanks, AK	89	120	whole-slab R-40

^{**} actual values will vary by project

Air Tightness

CFM @ 50 / Square Feet Building Envelope

Use to be .6 ACH

Now .005

5+ Story buildings with no combustion can be .008

Source Energy Limits per year

Residential

6200 kwh / per person

Bedrooms +1 = Persons

Protip - Keep spaces below 500 square feet to hit the target

Variations on Mixed Use Buildings

Going to 4200 in V2018

Commercial / Multifamily

38kbtu per interior conditioned floor area (iCFA)

Process Load variations

Other requirements

Reduced Thermal Bridge issues

Intense Moisture & Humidity Management

Efficient Ventilation capable of .3 air changes per hour at maximum

ASHRAE 62.2 residential or 62.1 commercial 2010

Follow indoor air plus

Follow zero energy ready

Follow Energy Star High Rise Certification

	Heating Demand/Load*	Cooling Demand/Load*	AIR-TIGHTNESS (cfm50/sf envelope)	Source Energy Demand	Renewable Generation for Source Zero	
SINGLE FAMILY	1 - 16.8 kBTU/ft².yr 0 - 7.6 BTU/hr.ft²	1 - 23.4 kBTU/ft².yr 1.3 - 9.5 BTU/hr.ft²	0.05	6200 kWh/person.yr	>Source Energy Demand	
COMMERCIAL				38 kBTU/ft2.yr	>Source Energy Demand	
MULTIFAMILY			0.08**	6200 kWh/person.yr /	>Source Energy	
RETROFIT	As above, + allowance for existing thermal bridges	As above, + allowance for existing thermal bridges	0.05 / 0.08**	38 kBTU/ft2.yr	Demand	
*Maximum climat	e specific targets for each	n individual project				

^{**}Buildings with 5 stories+, non-combustible construction

Summary of other recommendations:

- 1. Window U_{w install}-values 0.4 0.08 BTU/hr. ft² °F (varies by climate)
- 2. Ventilation system with heat and/or moisture recovery with >53%-95% efficiency and efficient fan @ 0.27-2.23W/cfm (vary by climate)
- 3. Thermal bridge-free construction <0.006 BTU/hr. ft °F

https://www.energy.gov/sites/prod/files/2017/02/f34/PHIUS%2B2015%20Passive%20Building%20Standards.pdf

WHO NEEDS TO BE INVOLVED?

PHIUS+ QA/QC - required

- PHIUS + Rater Single Family / Lowrise Multifamily
 - Credentials
 - RESNET OR BPI
 - o Experience
 - HERS rating, Energy Star and/or LEED for Home
 - Building Construction / design / engineering
 - Training 2 days + exam \$500.00
 - Maintain (Yearly) Proof of HERS credential and (Rate or attend trainings)

- PHIUS + Verifier Mid high rise Multifamily / Commercial
 - Credentials
 - RESNET OR BPI
 - Experience
 - Midrise / Highrise energy or green programs
 - Building Construction / design / engineering
 - Training 2 days + exam \$625.00
 - O Maintain (Yearly) Rate or attend trainingS

http://www.phius.org/become-a-professional/certified-passive-house-consultant-cphc-training/program-overview

Michigan		
Architectural Resource, LLC		СРНС
Dale Babcock #2081	2301 Platt Road, Suite 30	
dbabcock@architecturalresource.com	Ann Arbor, Michigan 48104	
Alex Jackson #2319		
ajackson@architecturalresource.com		
Susan Karczag, AIA Assoc. #2080		
skarczag@architecturalresource.com		
Michael Klement, AIA #2076		
mklement@architecturalresource.com		
Biddison Architecture		СРНС
Mrunmayee Beke #2079	320 Martin St	
mrunmayee.beke@gmail.com	Suite LL10	
	Birmingham, Michigan 48009	
Catalyst Partners		СРНС
Jamison Lenz #2317	502 Second St	
jamison@catalyst-partners.com	Ste 200	
	Grand Rapids, Michigan 49504	
Equilibrium Energy Spaces		СРНС
Christina Snyder #1137	Michigan	
CASnyder@ic.org		
Meadowlark Design + Build		СРНС
Brian Burkett #2388	3250 West Liberty	
brian@homewithmeadowlark.com	Ann Arbor, Michigan 48103	
Sturgeon Bay Woodworks Inc.		СРНС
Steve Johnston #1139	5440 Old Island Rd.	
sturgeonww@gmail.com	sturgeonww@gmail.com	
	Levering, Michigan 49755	

PHIUS Builders- highly recommended

Michigan

Habitat for Humanity of Kent County

Brandyn Deckinga #1903 bdeckinga@habitatkent.org

Robinson Sustainable Builders, LLC

Andra Robinson #1644 OnjTR@aol.com

PHIUS Certified Builder

425 Pleasant Ave SW Grand Rapids, Michigan 49503

PHIUS Certified Builder

1901 Katie Court Portage, Michigan 49024

http://www.phius.org/become-a-professional/phius-certified-builders-training/overview-and-registration

What is the PROCESS?

Steps

- 1. Understand the program and/or high CPHC
- 2. Sign PHIUS contract & Register Project
- 3. Access drop box PHIUS folder
- 4. Hire the PHIUS+ Rater
- 5. Sub slab insulation inspection
- 6. Predrywall inspection
- 7. Final site testing
- 8. Final documentation assembly
- 9. Rater submits to PHIUS
- 10. Adjustments or review if needed
- 11. Certification notice
- 12. Order plaque
- 13. Celebrate success

Documentation Heavy!

5. PHIUS+ Certification Fee Schedule

PHIUS quotes a single fee for the full certification process, rather than a separate fee for precertification and final certification. Certification fees are based upon the project's calculated square feet of iCFA (interior conditioned floor area).

PHIUS' quoted fees do not include the cost of the QA/QC visits and final on-site testing, which are determined by the PHIUS+ Rater/Verifier of choice, see Section 3.7.

iCFA	0-2500 ft ²	2501-4500 ft ²	4501+ ft ²	Hourly Rate
Base Rate	\$1,500	\$2,000	Custom*	\$150/hr.
PHIUS Professional (CPHC, Builder) & PHAUS Member	\$1,275	\$1,700	Custom*	\$125/hr.

^{*}For projects larger than 4500 square feet, a custom quote is required. To request a quote, please email certification@passivehouse.us and provide the estimated iCFA (see Section 4.4.1.4).

Here are estimated fees for larger buildings:

iCFA	10,000 ft ²	20,000 ft ²	50,000 ft ²	100,000 ft ²	200,000 ft ²	500,000 ft ²
Base Rate	\$4,000	\$6,750	\$11,875	\$16,250	\$21,875	\$33,125
PHIUS Professional & PHAUS Member	\$3,400	\$6,150	\$11,275	\$15,650	\$21,275	\$32,525

PHIUS Professionals that are also PHAUS Professional Members receive a 15% discount, up to \$600.

Non-Profit Organizations such as Habitat for Humanity are eligible for a larger discount, by request.

Passive House Goes with LEED

Project teams that are considering pursuing PHIUS certification may now use this third-party-verified home performance standard to earn credit toward LEED certification. This alignment offers builders and developers greater opportunity to more cost-effectively apply the best practices and verification strengths of both Passive House and LEED to produce high-performing, green homes for families all across the United States.

As part of the October 2016 addenda release, USGBC introduced Passive House US alternative compliance path for North America, which allows projects to leverage their PHIUS label to earn points toward LEED v4 certification under LEED v4 BD+C: Homes.

By earning the PHIUS certificate, projects can be awarded a minimum of 31.5 points in LEED v4 BD+C: Homes, as well as most prerequisites in the Energy and Atmosphere and Indoor Environmental Quality credit categories. Additional points can be earned by demonstrating achievement of a HERS Index score of 40 or better. Projects must earn at least 40 points in LEED to earn the first of four rungs of certification: Certified (40), Silver (50), Gold (60) and Platinum (80).

Credit-specific details

PHIUS-certified projects automatically earn 20 points in EA Annual energy use (20 points).

Because PHIUS projects must also earn the DOE ZERH label, they automatically meet the following LEED v4 Homes credits and prerequisites, as specified in Interpretation 10431:

31.5 points

https://www.usgbc.org/articles/use-passive-house-us-earn-credit-toward-leed-certification

Search the site

Credentials

Need help? Contact education@usgbc.org

113 completions

All about the PHIUS+ 2015: The **Climate Specific Passive Building Standard**

GBCI: 0920011466

Passive House Certification is a growing standard that goes beyond energy efficiency and residential buildings by also ensuring health and durability in all building types, new or renovation with specific standards that help those in different climate zones.

Rating system: v4, v2009

Published on: November 17, 2016

Average: 4.2 (12 votes)

https://www.usgbc.org/education/sessions/all-about-phius-2015-climate-specific-passivebuilding-standard-10557043

Thank you! Questions?

Brett.Little@greenhomeinstitute.org

Panasonic Ventilation

